
Hypervisor-based Prototyping of Disaggregated
Memory and Benefits for VM Consolidation
Kevin Lim

1
, Jichuan Chang

2
, Jose Renato Santos

2
, Yoshio Turner

2
, Trevor Mudge

1
, Parthasarathy

Ranganathan
2
, Steven Reinhardt

1, 3
, Thomas Wenisch

1

1
University of Michigan, Ann Arbor

2
Hewlett-Packard Labs

3
Advanced Micro Devices

Introduction
Problem: Impending memory capacity wall for commodity systems!

Opportunity: Optimizing for ensemble-level memory usage.

Proposed Solution: Disaggregated memory to provide memory
capacity expansion and dynamic capacity sharing.1

Prototype
Goal: Explore system-level implications of disaggregated memory.

What hypervisor changes are needed?
Are new system-level optimizations enabled?

Current Research: Implementing a Xen hypervisor-based prototype of
disaggregated memory (Figure B).

The majority of the code changes are in:
(1) memory management
(2) user-level tools for setting parameters

Functionality: Detects accesses to remote memory, on remote access
swaps remote page with local page.

Configuration: 2x Quad-core AMD Opteron 2354, 32 GB DRAM.
Large memory workloads: SPEC CPU (perlbench, gcc, bwaves, mcf,
zeusmp), PARSEC (blackscholes), quicksort, TPC-H.

Results
Virtual machines (VM) are setup with 2 or 8 GB of local and remote memory. Percentage and latency of remote memory are varied across runs.
Results with the hypervisor-based prototype, Figure C and D, show disaggregated memory provides remote capacity with minimal slowdown.

 Virtual Machine Consolidation
Disaggregated memory offers independent memory and CPU scaling,
removing the memory bottleneck for VM consolidation. Other benefits
are possible through techniques to increase effective memory capacity,
such as content-based page sharing (CBPS).

 Conclusions
Memory disaggregation addresses the capacity wall while providing
greater efficiency and OS-transparency. Our prototype shows the
feasibility of implementing disaggregated memory in a widely-used
open source hypervisor. Importantly, it enables in-depth research into
large-scale workloads and content-based page sharing.

5

A B FIgure A. Disaggregated memory
architecture, with memory blade
shared by multiple compute blades.

Figure B. Architecture of imple-
mented prototype. Modifications are
made to hypervisor; part of local
memory emulates remote memory.

 Future Work
We plan to use the prototype to model multiple systems sharing a
memory blade. We will also explore coordinating page migration with
VM scheduling for greater consolidation. One use case is for virtual
desktops, where non-shared pages can be evicted when a VM is
descheduled (user think time), and the evicted pages are prefeteched
when idle VM is rescheduled.

6

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

10% 20% 30% 40% 50% 60% 70% 80% 90%
% of hot content in shared pages

Over CBPS-only

Over mBlade-only

C D

E
Figure E. Potential VM
consolidation savings
enabled by memory
disaggregation with
CBPS at the memory
blade level.

Figure C. Performance of workloads as percentage of remote memory is varied. SPEC work-
loads have 2 GB of memory, all others have 8 GB.

Figure D. Microbenchmark results showing measured
remote memory latency versus configured latency.

Hypervisor

OS

App
DIMM
DIMM CPUs

DIMM
DIMM

Software Stack Server using our
hypervisor

1 K. Lim, et al., “Disaggregated memory for expansion and sharing in blade servers,” Proceed-
ings of the 36th Annual International Symposium on Computer Architecture, June 2009

Memory blade (enlarged)

Backplane

Protocol engine

Memory controller

Address mapping

CPUs
DIMM
DIMM

CPUs
DIMM
DIMM

CPUs
DIMM
DIMM

CPUs
DIMM
DIMM

Compute blades

OS

App

Software Stack

Hypervisor

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

0

5

10

15

20

25

30

35

40

0 µsec 4 µsec 10 µsec 15 µsec 20 µsec

A
cc

es
s ti

m
e

pe
r r

em
ot

e
pa

ge
, µ

se
c

Configured remote memory access latency

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

bwaves gcc mcf perlbench zeusmp blackscholes nsort tpch

N
or

m
al

iz
ed

 ru
nti

m
e

0% 10% 20% 30% 40% 50% 90%

1

10

100

1000

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Re
la
tiv

e
ca

pa
ci

ty

Year

of Cores

GB DRAM

Capacity
Wall

Time

Pe
r-

se
rv

er
 m

em
. u

sa
ge

