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Introduction
Problem: Impending memory capacity wall for commodity systems!

Opportunity: Optimizing for ensemble-level memory usage.

Proposed Solution: Disaggregated memory to provide memory 
capacity expansion and dynamic capacity sharing.1

Prototype
Goal: Explore system-level implications of disaggregated memory.

What hypervisor changes are needed? 
Are new system-level optimizations enabled? 

Current Research: Implementing a Xen hypervisor-based prototype of 
disaggregated memory (Figure B).

The majority of the code changes are in: 
(1) memory management
(2) user-level tools for setting parameters

Functionality: Detects accesses to remote memory, on remote access 
swaps remote page with local page.

Configuration: 2x Quad-core AMD Opteron 2354, 32 GB DRAM.
Large memory workloads: SPEC CPU (perlbench, gcc, bwaves, mcf, 
zeusmp), PARSEC (blackscholes), quicksort, TPC-H.

Results
Virtual machines (VM) are setup with 2 or 8 GB of local and remote memory. Percentage and latency of remote memory are varied across runs.
Results with the hypervisor-based prototype, Figure C and D, show disaggregated memory provides remote capacity with minimal slowdown.

  Virtual Machine Consolidation
Disaggregated memory offers independent memory and CPU scaling, 
removing the memory bottleneck for VM consolidation. Other benefits 
are possible through techniques to increase effective memory capacity, 
such as content-based page sharing (CBPS). 

  Conclusions
Memory disaggregation addresses the capacity wall while providing 
greater efficiency and OS-transparency. Our prototype shows the 
feasibility of implementing disaggregated memory in a widely-used 
open source hypervisor. Importantly, it enables in-depth research into 
large-scale workloads and content-based page sharing.
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A B FIgure A. Disaggregated memory 
architecture, with memory blade 
shared by multiple compute blades.

Figure B. Architecture of imple-
mented prototype. Modifications are 
made to hypervisor; part of local 
memory emulates remote memory.

  Future Work
We plan to use the prototype to model multiple systems sharing a 
memory blade. We will also explore coordinating page migration with 
VM scheduling for greater consolidation. One use case is for virtual 
desktops, where non-shared pages can be evicted when a VM is 
descheduled (user think time), and the evicted pages are prefeteched 
when idle VM is rescheduled.

6

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

10% 20% 30% 40% 50% 60% 70% 80% 90%
% of hot content in shared pages

Over CBPS-only

Over mBlade-only

C D

E
Figure E. Potential VM 
consolidation savings 
enabled by memory 
disaggregation with 
CBPS at the memory 
blade level.

Figure C. Performance of workloads as percentage of remote memory is varied. SPEC work-
loads have 2 GB of memory, all others have 8 GB.

Figure D. Microbenchmark results showing measured 
remote memory latency versus configured latency.
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1 K. Lim, et al., “Disaggregated memory for expansion and sharing in blade servers,” Proceed-
ings of the 36th Annual International Symposium on Computer Architecture, June 2009
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